before studying the principle and its application discussed here.

Carrying out tedious and cumbersome arithmetical operations, easily, speedily and in some cases executing them mentally comes under the realm of High Speed maths.

The methods of arithmetical operations applied are totally unconventional.

People who are deeply rooted in the conventional methods, may find it difficult, at first reading, to understand the methods.

But, these methods, based on the Sutras (aphorisms or Formulas) of Ancient Indian Vedic Mathematics are simple and easy to understand, remember and apply, even by little children.

Here we deal with the principles appled to Multiplication. For the application to other topics of math, go to
Vedic Maths eBook. for more details, see near the bottom of the page.

The Urdhva Tiryak Sutra (meaning : Vertically and cross-wise)

This is a general Formula applicable to all cases of multiplication.

Using this principle, we can find the product of two numbers easily.

Multiply vertically and crosswise to get the digits of the product.

Examples will clarify the method.

Before seeing the examples, let us see the formula for finding the product of two digit numbers.

Let us say the two digits of the first number be 'a' (tens' digit) and 'b'(units' digit).

And those of the second number be 'p' (tens' digit) and 'q'(units' digit).

Write the digits of the two numbers one below the other as follows.

a b
p q

The product of these numbers has three parts which are given below seperated by '/'.

a b
p q
------
ap/(aq+pb)/bq
------

'ap' is the Hundreds' part which is the vertical product of the first column.

(aq+pb) is the Tens' part which is the sum of the cross-wise products 'aq' and 'pb'.

'bq' is the units' part which is the vertical product of the second column.

Let us see the method by examples.

Example 1 of Vedic Mathematics

To find 21 x 13

21
13
-----
2x1/2x3+1x1/1x3
= 2/7/3
21 x 13 = 273

The product has three parts and each part is seperated by slash (/).

First part of the product = product of first vertical digits = 2x1 = 2

Second part of the product = sum of the cross-wise products = 2x3+1x1 = 6+1 = 7

Third part of the product = product of second vertical digits = 1x3 = 3

Thus 21 x 13 = 273.

Example 2 of Vedic Mathematics

To find 41 x 51

41
51
----
4x5/4x1+5x1/1x1
=20/9/1
41x51 = 2091

The product has three parts and each part is seperated by slash (/).

First part of the product = product of first vertical digits = 4x5 = 20

Second part of the product = sum of the cross-wise products = 4x1+5x1 = 4+5 = 9

Third part of the product = product of second vertical digits = 1x1 = 1

The product has three parts and each part is seperated by slash (/).

First part of the product = product of first vertical digits = 2x4 = 8

Second part of the product = sum of the cross-wise products = 2x2+4x3 = 4+12 = 16

This is a two digit number.

Units digit (6) is retained and tens' digit (1) is carried over to the immediate left place.

See that in 16, 1 is written in small letters indicating its carry over to the immediate left place and 6 is written normally indicating it is retained in its place.

Third part of the product = product of second vertical digits = 3x2 = 6

Thus 23 x 42 = 966.

To explain the procedure clearly, so many steps are shown.

In practice we can do the calculations mentally and write the answer in fewer steps as follows.

23
42
----
8/16/6
=9/6/6 (worked out from right)
23 x 42 = 966.

The product has three parts and each part is seperated by slash (/).

First part of the product (before carry over from second part) = product of first vertical digits = 3x2 = 6

Second part of the product (before carry over from third part) = sum of the cross-wise products = 3x9+2x7 = 27+14

Third part of the product = product of second vertical digits = 7x9 = 63

This is a two digit number.

Units digit (3) is retained and tens' digit (6) is carried over to the immediate left place.

See that in 63, 6 is written in small letters indicating its carry over to the immediate left place and 3 is written normally indicating it is retained in its place.

Now, Second part of the product (after carry over from third part) = 27+14+6 = 47

This is a two digit number.

Units digit (7) is retained and tens' digit (4) is carried over to the immediate left place.

See that in 47, 4 is written in small letters indicating its carry over to the immediate left place and 7 is written normally indicating it is retained in its place.

Now, First part of the product (after carry over from second part) = 6+4 = 10

Thus 37 x 29 = 1073.

To explain the procedure clearly, so many steps are shown.

In practice we can do the calculations mentally and write the answer in fewer steps as follows.

37
29
----
6/41/63
=10/7/3 (worked out from right)
37 x 29 = 1073.

Get The Best Grades With the Least Amount of Effort

Here is a collection of proven tips, tools and techniques to turn you into a super-achiever - even if you've never thought of yourself as a "gifted" student.

The secrets will help you absorb, digest and remember large chunks of information quickly and easily so you get the best grades with the least amount of effort.

If you apply what you read from the above collection, you can achieve best grades without giving up your fun, such as TV, surfing the net, playing video games or going out with friends!

Recently, I have found a series of math curricula (Both Hard Copy and Digital Copy) developed by a Lady Teacher who taught everyone from Pre-K students to doctoral students and who is a Ph.D. in Mathematics Education.

This series is very different and advantageous over many of the traditional books available. These give students tools that other books do not. Other books just give practice. These teach students “tricks” and new ways to think.

These build a student’s new knowledge of concepts from their existing knowledge. These provide many pages of practice that gradually increases in difficulty and provide constant review.

These also provide teachers and parents with lessons on how to work with the child on the concepts.

The series is low to reasonably priced and include